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The occurrence of waves on viscoelastic compliant layers subject to ¯uid ¯ow
is studied from the viewpoint of their classi®cation as convective and absolute
instability of the ¯ow-wall system. Uniform potential ¯ow and modi®ed
potential ¯ows representing laminar and turbulent boundary layers are
considered. It is found that uniform potential ¯ow over viscoelastic (dissipative)
layer admits only absolute instability, whereas convective and absolute
instability modes may be found under laminar and turbulent boundary layers.
The onset velocity of absolute instability remains nearly constant with changes
in wall damping, with a value of about 3Ct for turbulent boundary layers,
where Ct is the elastic shear wave speed of the compliant material. Convective
instability always occurs at a lower ¯ow velocity than absolute instability. The
onset velocity for convective instability, on the other hand, increases fairly
rapidly with wall damping and tends towards the onset velocity for absolute
instability in the case of a highly damped layer. The results suggest that the
static divergence waves observed on highly damped coatings in experiments are
manifestation of absolute instability.
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1. INTRODUCTION

The experiments of Gad-el-Hak et al. [1], Gad-el-Hak [2] and Hansen et al. [3]
show that surface waves on viscoelastic compliant walls under a turbulent
boundary layer may be divided into two categories: the slow waves and the fast
waves. The slow waves, which have also been termed static divergence waves, are
found on compliant layers possessing a signi®cant level of material damping,
whereas the fast waves, which have phase speeds in the range of 30±50% of the
free-stream velocity had only been observed on nearly elastic layers. With the
notable exceptions of Duncan et al. [4] and Evrensel and Kalnins [5], much of
the theoretical studies of ¯ow over compliant surfaces have tended, however, to
focus on stability of ¯ows in their laminar state. The motivation for the laminar
work, such as those of Carpenter and Garrad [6] and Yeo [7] to name a few, has
come mainly from a desire to understand the conditions under which compliant
walls may delay the transition of laminar boundary layers to a turbulent state,
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and thus realize the much sought-after bene®t of drag reduction that comes with
transition delay. However, turbulent ¯ows are more prevalent in nature.
Knowledge of their interaction with compliant layers is equally important since
the occurrence of the slow waves, which generally have large-amplitudes, will
increase skin-friction drag via their roughness action. Gad-el-Hak et al. [1] noted
that the structures of turbulent boundary layers are also modi®ed in the presence
of the slow waves. These have implications for the use of compliant materials as
acoustic coatings in underwater applications
The occurrence of surface waves on compliant or ¯exible walls subjected to

¯ow, be it laminar or turbulent, can generally be viewed as arising from an
instability of the ¯ow-wall dynamical system in coupled interaction. Adopting
this viewpoint, Benjamin [8] and Landahl [9] applied normal-mode temporal
stability theory to the study of ¯ow over ¯exible membrane surfaces. Normal-
mode temporal stability theory assumes the instabilities to be sinusoidal waves of
uniform amplitude in space that grow in time. They showed that the ¯ow±
¯exible wall system can theoretically support a variety of instability waves in
addition to derivatives of the well-known Tollmien±Schlichting (TS) waves that
are found in an unstable laminar boundary layer over a rigid ¯at plate. The
additional waves were clearly brought into being by the compliant quality of the
wall, and were termed Flow-induced Surface Instability by Carpenter [6] and
Compliance-induced Flow Instability by Yeo [7] to emphasize their different
origin from the TS waves. They were shown to arise from the unstable
dynamical interplay between the inertial quality of the ¯ow and the dynamic and
static deformation modes of the compliant wall. The former leads to waves that
travel at a fair speed (termed travelling wave ¯utter or TWF for short) and the latter
produces nearly static or slowly moving waves (termed static divergence or SD for
short). Yeo and Dowling [10] were able to derive general criteria that relate the
stability of these waves to the dynamic and static wave-bearing characteristics of a
compliant wall. Benjamin [8] and Landahl [9] also showed that, despite these new
instabilities being created, wall compliance is actually stabilizing on the TS waves.
Furthermore, Landahl [9] and Benjamin [11] were able to clarify the important and
sometimes anomalous effect of wall damping on the various instabilities by
invoking energy arguments. Benjamin [11] assigned a classi®cation of the instability
waves based on a concept of the activation energy of a wave. The TWFmodes have
positive activation energy and are Class B in Benjamin's classi®cation. Such a wave
would be attentuated by energy loss from the dynamical system, such as would be
caused by increased wall damping. The TS waves are Class A and have negative
activation energy. They actually strive on increased wall damping, that causes
energy loss from the system. The SD waves are frequently classi®ed as a Class A
because they are frequently destablized by increase in wall damping and appear to
require wall damping for their occurrence. Benjamin also introduced a Class C
wave. Class C wave phenomena are characterized by mainly conservative exchange
of wave energy between the ¯ow and the wall, and tend to be relatively insensitive
to small variation in wall damping.
The surface waves in the turbulent-¯ow experiments of Gad-el-Hak et al. [1]

and Gad-el-Hak [2] clearly represent deviations from mean-¯ow conditions that
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could not be ascribed to turbulent ¯uctuations. In the context of temporal
stability theory, the slow and fast waves clearly correspond in character to the
TWF and the SD waves. Both Duncan et al. [4] and Evrensel and Kalnins [5]
employed the normal-mode temporal theory of instability in their study of
laminar and turbulent layers over viscoelastic compliant layers. Duncan et al.
investigated theoretically the occurrence of slow-wave instability on viscoelastic
layers by assuming the pressure ¯uctuations of the ¯ow to be given by that of
potential ¯ow modi®ed by a complex scaling factor of the form Kte

iyp . Values of Kp

and yp were obtained from literature to simulate the perturbative actions of both
laminar and turbulent boundary layers on the compliant surfaces. Despite the
simplicity of the ¯ow model, Duncan et al.'s results display a high degree of
qualitative consistency with the experimental results of Gad-el-Hak et al. [1].
Evrensel and Kalnins [5] employed a more elaborate ¯ow model (viscous) to study
the onset of slow and fast waves. The turbulent boundary layers were represented
by their mean-velocity pro®le. The contributions of turbulent stresses to the
dynamics of perturbation were neglected however. They were able to obtain good
quantitative agreement with the results by Gad-el-Hak et al. on the onset ¯ow
velocities and phase speeds of the instabilities, but not on wavelengths.
The normal-mode temporal theory models only the variation of a wave with

respect to time. This representation of wave instability is satisfactory for a
compact (closed) dynamical system. But it becomes inadequate when carried
over to open dynamical systems, such as in ¯ow past a ¯at plate, where the
evolution of waves may display non-uniformity in space due to growth or decay
in space directions. The popularity of the temporal theory in literature on
hydrodynamic stability is due in no small degree to its relative simplicity. While
the temporal theory will undoubtedly continue to play an important role for the
local analysis of open systems, a more complete theoretical model of wave
evolution in open systems is given by the time-asymptotic spatial-temporal
theory of Briggs [12]. Briggs shows via a rigorous spatio-temporal analysis,
which takes into account causal factors, that the instabilities in open physical
systems tend to evolve in one of two physically distinct manners: an unstable
disturbance may grow in size as it propagates away from its initiating source; or
it may grow with time in an ever-expanding neighbourhood of the source. In the
®rst case, the instability is said to be convective. At any ®xed spatial position
away from the source, the instability wave eventually vanishes when the
initiating source is turned off. An instability growing by the second mode is
termed an absolute instability. Once excited, an absolute instability is self-
sustaining. At any ®xed spatial position, the disturbance grows with time until
its growth is ultimately delimited by non-linear dynamical factors. An absolute
instability is clearly a much more devastating form of instability than a
convective instability. Moreover, because the group velocity of an absolute
instability wave mode is zero, it may assume a stationary or nearly stationary
appearance at its onset.* A more recent account of the theory of convective and

*The concept of group velocity as the propagation velocity of wave energy is meaningful only
for neutral and slightly unstable waves.
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absolute instabilities is given by Bers [13]. The spatio-temporal model is by far a
more complex model of wave evolution than the standard normal-mode model,
both in theory and in implementation. It is only with the development in recent
years of more effective algorithms that the spatio-temporal theory has now
grown beyond applications to highly idealized stability problems in analytical
form.
The experimental observations of the fast and slow waves by Gad-el-Hak et

al. [1] and Gad-el-Hak [2] are more or less in accord with the theoretical
dichotomy of convective and absolute instabilities as described above. The
stability of ¯ow over viscoelastic compliant layers is re-examined in this paper
from the viewpoint of their classi®cation as absolute and convective instabilities.
For this study, the modi®ed potential-¯ow approach of Duncan et al. [4] has
been adopted in modelling the ¯ow. The model is simple, but yet possesses
suf®cient ¯exibility for the perturbation responses of both laminar and turbulent
boundary layers to be approximated within a single theoretical framework. It
could be argued that the model is over-simplistic. However, the good consistency
of its results with the experimental observations is proof of the model's adequacy
in representing the cardinal physics of the ¯ow (when the appropriate values of
Kp and yp are used); and one could be reasonably con®dent that the model will
yield correct qualitative stability behaviour even though the numerical values
themselves may lack in accuracy.
The dispersion relation for wave stability is formulated as a generalized matrix

eigenvalue problem following Yeo et al. [14], who have shown that absolute
instability modes do in fact exist in a Blasius boundary layer over soft damped
compliant layers. Results for absolute and convective instabilities in potential
¯ow and laminar and turbulent boundary layers are obtained and their relations
to the observed occurrences of slow and fast waves are discussed.

2. THE STABILITY EIGENVALUE PROBLEM

The stability problem for modi®ed potential ¯ows over viscoelastic compliant
layers (see Figure 1) is formulated here as a generalized matrix eigenvalue
problem. We shall restrict our consideration to two-dimensional wave modes.
Yeo [15] has shown that the most dominant surface-related instability modes, the
type considered in this paper, are two-dimensional. The linear spanwise
formation of the slow wave ridges in Gad-el-Hak et al. [1] also testi®es to their
two-dimensionality.
The velocity potential of an x1-travelling wave perturbation in a uniform

potential ¯ow domain has the form:

f � A � exp�ÿax2� exp�iax1 ÿ iot�, �1�
where A is a complex constant, and a and o are the wavenumber and radian
frequency of the wave respectively. The pressure perturbation acting on the
compliant surface due to the ¯ow may be derived from a direct application of
Bernoulli's theorem to be
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ps � p̂s exp�iax1 ÿ iot�,
where p̂s is the complex amplitude given by

ps � ÿiaA�U1 ÿ c�: �2�
c�o/a is the complex phase speed of the wave perturbation.
Uniform potential ¯ow represents the limiting form of laminar and turbulent

boundary layers as their thickness tends to zero. Duncan et al. [4] assumes the
pressure ¯uctuations acting on the compliant wall in the presence of a boundary
layer to be given by the pressure ¯uctuations (2) of the corresponding potential
¯ow modi®ed by a complex factor Kpe

iyp:

p̂s � ÿKp exp�iyp�iaA�U1 ÿ c�: �3�
The real coef®cient Kp , which is generally <1, scales the magnitude of pressure
¯uctuation in a potential ¯ow to the level encountered in the boundary layer. yp
sets the phase angle of the pressure ¯uctuation relative to the vertical
displacement of the compliant surface. It affects directly the transfer of energy
from the ¯ow to the wall. Flows with ¯uctuating pressure amplitude at the wall
p̂s prescribed by equation (3) are termed modi®ed potential ¯ows in this paper for
ease of reference.
The parameters Kp and yp are, in general, functions of the wavenumber and

frequency of the disturbance wave. Carpenter and Gajjar [16] presented an
analytical approximation for pressure ¯uctuations in boundary-layer ¯ows over
bending plates. The pressure approximation may theoretically be used to
estimate quantities such as the Kp and yp . Unfortunately, the approximation fails
as the phase speed c! 0, and is thus unsuitable for application to static
divergence study. For applications to incompressible viscoelastic layers, the long-
wave assumption (a5 1) inherent in their theory may also become a restricting
factor since such layers (unlike bending plates) may support short wavelength
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x1
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Figure 1. Fluid ¯ow over a viscoelastic compliant layer.
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instabilities because of their compliance at high wavenumbers. It is also unclear
if the analytical approximation for pressure may be extended to account for
turbulent ¯uctuations present in turbulent boundary layers.
For simplicity, the parameters Kp and yp are assumed to be constants in the

present model of pressure ¯uctuations under a boundary layer. Duncan et al. [4]
obtained suitable values of Kp and yp for turbulent boundary layers from the
experimental data of Kendall [17]. For laminar boundary layers, correspond-
ing values were obtained from the direct numerical simulation results of
Balasubramanian and Orszag [18]. The values of Kp and yp employed by Duncan
et al. will be adopted in this study. Duncan et al. have demonstrated that this
relatively simple approach is adequate for eliciting the major behavioural trends
and qualitative relationships when reasonable ranges or typical values are
employed for the parameters.
The displacement of the corresponding two-dimensional wave in the compliant

wall is given by

�Z1, Z2� � �Ẑ1, Ẑ2� exp�iax1 ÿ iot�, �4�
where Ẑ1(x2) and Ẑ2(x2) are amplitude functions which describe the variation of
perturbation amplitude in the thickness direction of the compliant layer. For an
homogeneous isotropic compliant layer (effects of body force neglected) the
propagation of the wave is governed by the following viscoelastic analogue of
Navier's equations (see reference [19]):

G�Ẑ001 ÿ a2Ẑ1� ÿ K� G

3

� �
�a2Ẑ1 ÿ iaẐ02� � ro2Ẑ1 � 0, �5a�

G�Ẑ002 ÿ a2Ẑ2� � K� G

3

� �
�iaẐ01 � Ẑ002� � ro2Ẑ2 � 0: �5b�

A prime denotes ordinary derivative in the x2-direction. G and K are the shear
and bulk moduli of the compliant material, respectively. Viscoelastic damping
behaviour is modelled by assuming a Voigt solid for the compliant materials in
shear:

G � Gr � iGi � rC2
t iÿ iod, �6�

where r, Ct and d are respectively the material density, the elastic shear wave
speed and the damping coef®cient of the material. These and other physical
quantities employed in the paper may be assumed to have been non-
dimensionalized with respect to the following reference scales: U1 , the free-
stream velocity of the ¯ow; the density of the ¯ow; and the thickness of the
compliant layer. The non-dimensional thickness of the compliant layers is
therefore 1�0 throughout this paper. As the compliant coating materials tested by
Gad-el-Hak et al. [1] and others have densities which are close to that of water,
the test ¯uid, it shall henceforth also be assumed that the non-dimensional
material density of the compliant layers is r� 1�0.
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Interaction between the ¯ow and the compliant layer is governed by continuity
conditions at their interface at x2� 0. The continuity of normal velocity yields

A � ÿi�U1 ÿ c�Ẑ2jx2�0, �7�

The continuity of normal and shear stresses are given by:

2GẐ02 � K� G

3

� �
�iaẐ1 � Ẑ02� � ÿp̂s , G�Ẑ01 � iaẐ2� � 0, �8a, b�

where p̂s denotes the complex amplitude of ¯uid pressure acting on the
compliant surface, given by equation (3). Equation (8b) is a statement of the
assumption that the ¯ow exerts negligible shear stress on the compliant surface.
The compliant layer is assumed to be attached to a rigid base at x2�ÿ1 (non-

dimensionalized by the thickness of the compliant layer). This yields the
following boundary conditions on the displacement functions:

Ẑ1jx2�ÿ1 � 0 and Ẑ2jx2�ÿ1 � 0: �9a, b�

The wall equations (5a, b) and its four boundary conditions (8a, b) and (9a, b),
with ¯uid pressure p̂s prescribed by (3) and (7), form a homogeneous system of
equations which constitutes the stability eigenvalue problem.
A Chebyshev collocation procedure is employed in the formulation of the

stability eigenvalue problem as a generalized linear matrix eigenvalue problem
for complex frequency o. Yeo et al. [14] ®rst carried this out for ¯ow over
viscoelastic compliant layers. The complex wall displacement function Ẑ1(x2) and
Ẑ2(x2) are approximated by Chebyshev polynomial series of the Mth order:

Ẑ1�x2� �
XM
j�0

ajTj�x�x2��, �10a�

Ẑ2�x2� �
XM
j�0

bjTj�x�x2��, �10b�

where x(x2)� 1� 2x2 is a transformation function which maps the wall domain
[ÿ1, 0] onto the domain [ÿ1, 1] of the Chebyshev polynomials. M should be
large enough to ensure adequate resolution of the vertical structure of the wave
perturbation in the compliant layer. Typical values of M range from 20 to 40.
The substitution of the Chebyshev representations (10a, b) into the governing
equations (5a, b) and boundary conditions (8a, b) and (9a, b) produces a system
of linear algebraic equations in the polynomial coef®cients aj and bj . The
complex frequency o appears non-linearly (quadratic order) in the wall
equations (5a, b) and boundary condition (8b). The problem is rendered linear in
o by introducing the auxiliary vectors oa and ob where a� (a0 , a1 , . . . , aM) and
b� (b0 , b1 , . . . , bM) are vectors of the polynomial coef®cients. The ®nal
assembled form of the matrix eigenvalue equation is
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A11 A12 A13 A14

A21 A22 A23 A24

0 0 I 0
0 0 0 I

2664
3775ÿ o

B11 B12 B13 B14

B21 B22 B23 B24

I 0 0 0
0 I 0 0

2664
3775

8>><>>:
9>>=>>;

a
b
oa
ob

8>><>>:
9>>=>>; � f0g: �11�

For a given set of wall properties and wavenumber a, all the temporal
eigenvalues o of equation (11) may be obtained by applying the standard QZ
algorithm.
This formulation allows all the o eigenvalues to be found without the need for

any guess values. It has considerable advantage over traditional shooting
methods, which generally require a guess value for the determination of each
eigenvalue. Frequently, poor guess values lead to slow or even non-convergence
of the shooting procedure. In applying shooting methods, an eigenvalue search
procedure may have to be instituted to ensure that the important eigenvalues are
not missed out due to poor choice of guess values.
The conventional procedure for ®nding absolute and convective instabilities,

which is based on a direct interpretation of the theory by Briggs [12], requires
the tracking of the a-eigenmodes (a-roots) in the complex a-plane as the
imaginary part of frequency (oi) is varied. The task of following the a-roots and
looking out for their intersections is a highly laborious one. A more ef®cient
procedure devised by Kupfer et al. [20] to ®nd the instabilities is employed in the
present paper. The method is based on an examination of contours of constant
ai in the o-plane. The formulation of the stability problem as a linear matrix
eigenvalue problem in o for prescribed values of a facilitates the construction of
such contours. Absolute instabilities, which are formed from the coalescence of
two or more a-roots in the a-plane, show up as cusp points in the ai-contours in
the o-plane. The cusp is formed as a result of the period-doubling or -tripling
characteristics of the local a j4o map at points of eigenvalue- or root-
intersection. However, not all cusp points in the o-plane are admissible as
absolute instability. The cusp point of an absolute instability must lie in the
upper half of the o-plane (i.e., oi> 0). Furthermore, the manner of the
associated root intersection in the a-plane must satisfy speci®c causality
condition. In the o-plane, the causal requirement may be veri®ed by extending a
vertical line upwards from the cusp point and determining the number of times
this line intersects the ai� 0 contour. An odd number of intersections signi®es a
genuine absolute instability eigenstate.
Convective instabilities have real o and complex a (ai< 0 for downstream

growing modes and ai> 0 for upstream growing modes). These modes are thus
distributed along the real axis of the o-plane. Genuine convective instabilities
must also satisfy the requirement of causality. The causality check procedure for
absolute instability is also applicable to convective instability. The reader is
referred to Bers [13] and Kupfer et al. [20] for details.
The greater ease of detecting mode coalescence aside, analysis in the o-plane

also confers other advantages. Every absolute and convective instability is
contiguously linked to an unstable temporal branch. By focusing on events in
the o-plane, there is thus the additional bene®t that only o-branches which
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exhibit temporal instability would need to be searched for the spatial-temporal
modes. In most physical problems, there are usually only a small number of
unstable temporal branches to reckon with (compared with the numerous a-
roots that must be tracked for every unstable o-branch). Also, many physical
problems (including the present one) are more conveniently formulated as a
linear matrix eigenvalue problem in o than they are in a because of the higher
polynomial degree of the latter. The matrix eigenvalue approach generally allows
all the unstable o-branches to be identi®ed.

3. RESULTS AND DISCUSSION

Two main categories of ¯ows are examined in this paper for the occurrence
of absolute and convective instabilities: namely uniform potential ¯ow, and
modi®ed potential ¯ows representing turbulent and laminar boundary layers. We
will focus more attention on the turbulent ¯ow case since experimental data on it
are more complete. In each case, the temporal instability of the ¯ow was ®rst
studied, via the solution of equation (11) for real a, to locate the unstable
branches. Mapping analyses were then carried out on the unstable temporal
branches to identify the spatio-temporal instabilities and their type. It is
pertinent to note that temporal instability is a necessary condition for the
existence of both convective and absolute instabilities. The present study is
expected to yield instabilities of the hydroelastic or surface-related category
(associated with interaction of inertia, wall elasticity and energy transfer effects).
The present simpli®ed ¯ow model may not capture the Tollmien±Schlichting
class of instabilities, which requires explicit modelling of ¯uid viscosity.

3.1. UNIFORM POTENTIAL FLOW

Temporal study shows that uniform potential ¯ow over viscoelastic compliant
layers becomes unstable when the free-stream velocity U1 exceeds 1�4142Ct .
This is in agreement with the numerical results of Duncan et al. [4]. In the range
of U1 considered, up to 6Ct , there appears to be only one unstable temporal
branch. It is possible additional unstable temporal branches may appear at even
higher speeds, but the branch considered here, with its relatively lower onset
velocity, is the dominant temporal branch. The onset velocity of temporal
instability at U1� 1�4142Ct is unaffected by the level of material damping in the
layer.
Figure 2(a) shows the mapping of the ai-contours in the complex o-plane for

the case of a compliant layer with U1� 3Ct and material damping coef®cient
d� 0�05. The ai� 0 contour marks out the temporal eigenmodes. It forms a loop
which crosses over itself at the origin point o� 0. The loop itself is located in the
upper half of the o-plane (oi> 0) and thus comprises unstable temporal modes.
The ai� 0 loop encloses a cusp point I, which indicates a possible mode of
absolute instability. Compliance with causality requirement may be veri®ed by
extending a straight line vertically upwards from the cusp point and ascertaining
the number of times the line intersects the ai� 0 contour. It is readily seen that
such a straight line would intersect the said contour only once. This con®rms
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that the cusp point indeed represents an absolute instability eigenstate, and that
uniform potential ¯ow over the compliant layer admits absolute instability.
The effects of shear-wave speed Ct (which governs the stiffness of the

compliant layer) on the ai� 0 contour and the cusp point are depicted in Figure
2(b). Increase in Ct (or reduction in U1) causes the ai� 0 loop in the upper-half
plane to tighten and shrink towards the origin o� 0. The shrinking of the loop
takes place within the upper-half plane, with the cusp point being entrapped
within the loop throughout. The loop eventually vanishes into the origin as U1/
Ct is decreased to a value 1�4142, at which point the loop is itself transformed
into the cusp that it encloses. U1/Ct� 1�4142 is also precisely the threshold value
for the onset of temporal instability as noted earlier. This is no mere coincidence
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Figure 2. (a) The ai-contours in the complex o-plane for a potential ¯ow at U1� 3�0Ct ,
d� 0�05. The cusp point occurs at point I. (b) The effects of shear-wave speed Ct on the ai� 0
contour and cusp point. Increase in Ct causes the at� 0 loop to shrink towards the origin o� 0.
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of course, since the appearance of the loop (which occurs when U1/Ct becomes
larger than 1�4142) in the upper-half plane (oi> 0) also marks the onset of
temporal instability. This shows that the absolute instability of uniform potential
¯ow over viscoelastic compliant layers sets in at the point of the ¯ow becoming
temporally unstable.
One can usually ignore the occurrence of convective instability (if any) when

there is absolute instability. This is because the latter is a more devastating form
of instability. For completeness sake, however, we shall nevertheless attempt to
characterize the occurrence of convective modes here. Convective instabilities in
an open system may take the form of a downstream-growing (ai< 0) or an
upstream-growing (ai> 0) sinusoidal wave mode of real frequency (oi� 0). They
are hence to be found on the real axis of the o-plane. Figure 2(a) shows that the
eigenmodes on the real-o axis have ai< 0. These modes would give rise to
downstream convective instability of the ¯ow if they can be shown to satisfy the
necessary causality condition. Causality is again veri®ed by extending a straight
line vertically upwards from the eigenmodes concerned and counting the number
of times the drawn line intersects the ai� 0 contour. In Figure 2(a), such a line
drawn from the real-o axis may be seen to intersect the ai� 0 contour zero or
two times. These are hence not true convective instability modes; and they have
been termed evanescent modes* in the literature.
The above results indicate that uniform potential ¯ow over viscoelastic layers

(dissipative) admits only absolute instability. Absolute instability sets in as the
¯ow becomes unstable according to normal-mode temporal theory. Since the
onset of temporal instability in uniform potential ¯ow is unaffected by the level
of material damping in the wall, the onset ¯ow velocity for absolute instability
would remain constant at U1� 1�4142Ci for all d. Similar studies of membrane
and plate surfaces on damped elastic foundation also yield only absolute
instability.{

3.2. MODIFIED POTENTIAL FLOW

The spatio-temporal stability disposition of modi®ed potential ¯ow
representing turbulent and laminar boundary layers will now be examined. For
turbulent layers, the parameters are assigned the value Kp� 0�25 and yp�ÿ10�
following Duncan et al. [4], who obtained these values from the experiments of
Kendall [17]. These values are applicable for wavelength/displacement-thickness
ratio l/d* in the range of 14 to 20, which falls midway between the experimental
ranges of Gad-el-Hak et al. [1] (about 3 to 8�5) and Hansen et al. [3] (about
20±40).
The ai contours for turbulent boundary layer over a viscoelastic compliant

layer wall with Ct� 0�333 (U1� 3�0Ct) and d� 0�03 are given in Figure 3(a). The
ai� 0 contour differs signi®cantly from the case of a uniform potential ¯ow: it
does not loop over itself in this part of the o-plane, nor pass through the origin

*Conventional normal-mode spatial theory, which does not consider causation, is not able to
distinguish between genuine convective instabilities and evanescent modes.
yBoth absolute and convective waves modes were, however, found by Brazier-Smith and Scott

[21] on unsupported elastic (non-dissipative) plate surfaces.
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of the plane. The ¯ow-wall combination is evidently unstable since part of the
ai� 0 contour lies in the upper-half o-plane. A cusp point is detected in the
®gure, but it does not constitute an absolute instability since oi< 0 at the cusp
point. Causal convective eigenstates are to be found, however, along the real-o
axis between the intercepts of the axis with the ai� 0 contour (5�57<oi< 5�64).
These have ai< 0, which indicates that they are downstream growing real-
frequency sinusoidal wave modes. They give rise to convective instability. The
¯ow is hence convectively unstable.
Figure 3(b) depicts the variations of the ai� 0 contour and the cusp point with

the shear-wave speed Ct of the viscoelastic layer. Reduction in Ct (or increase in
U1/Ct) causes the ai� 0 contour and the cusp point to rise in the o-plane,
eventually resulting in the ¯ow becoming convectively and then absolutely
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Figure 3 (a) The ai-contours in the complex o-plane for turbulent boundary-layer ¯ow over a
viscoelastic layer at U1� 3�0Ct , d� 0�03. (b) The variation of the ai� 0 contour and cusp point
with Ct for a turbulent boundary-layer ¯ow at wall damping d� 0�02. The onset velocities
U�conv�1 � 2�78Ct and U�abs�1 � 3�02Ct .
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unstable as each (the ai� 0 contour and cusp point) crosses the real-o axis in
turn. Convective and absolute instabilities occur respectively at Ct� 0�36
(U1� 2�768Ct) and 0�33 (U1� 3�02Ct). The geometrical relationship between
the cusp point and the over-arching ai� 0 contour reveals that convective
instability will always precede the absolute instability as the ¯ow velocity U1 is
increased. The ¯ow continues to be convectively unstable in the presence of the
absolute instability.
A broadly similar pattern of behaviour in the o-plane is followed by laminar

boundary layers for which the following values of Kp� 0�067 and yp�ÿ30� [4]
have been used. Figure 4 depicts the ai� 0 contours for a range of U1/Ct from
2�0 (Ct� 0�5) to 6�0 (Ct� 0�167). Only cusp points at U1/Ct� 6�0 and 5�0 are
shown, as the rest are beyond the range of the ®gure. Absolute instability occurs
at an onset velocity of U1> 5�83Ct (Ct< 0�171), which is signi®cantly higher
than the 3�02Ct for the turbulent boundary layer considered above. Another
signi®cant difference between the results for the laminar and turbulent cases lies
in the broad sweep of the ai� 0 contours for the former compared to the rather
peaky maximum of the latter (see Figure 3). The very peaky maximum of the
ai� 0 contour suggests that incipient convective instability of the turbulent
boundary layers will be very narrow-banded in a and o. This seems to be in
agreement with the highly regular sinusoidal form of the wave trains that Gad-
el-Hak [2] had observed on nearly elastic layers, which signi®es the presence of a
fairly well-de®ned normal mode. On the other hand, for the laminar boundary
layer (with its highly diffused maximum point), there is greater likelihood that
the spectrum of unstable modes at the onset of convective instability will be
broad-banded, so that no well-de®ned wave train may be discerned. The latter
would make the visual detection of incipient convective modes more dif®cult.
The effects of material damping on the onset of absolute and convective

instabilities for the turbulent boundary layers are shown in Figure 5. The onset
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Figure 4. The variation of the ai� 0 contour and cusp point with Ct for a laminar boundary-
layer ¯ow at wall damping d� 0�01. The onset velocities U�conv�1 � 2�84Ct and U�abs�1 � 5�83Ct .
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velocity of absolute instability, which is hereafter denoted by U�abs�1 , remains
relatively constant at about 3�0Ct , dipping slightly to 2�86Ct as damping
coef®cient d! 0. The computed absolute instability eigenstates have relatively
small wavelengths and are thus, in a strict sense, valid only for fairly thick
compliant layers. The temporal instabilities obtained by Duncan et al. [4] also
have small wavelengths.* Gad-el-Hak et al. [1] found that the onset U1 of the
slow waves varies with the thickness of the compliant layers. The onset U1
decreases from about 8Ct for a thin coating of 0�15 cm to 4�5Ct for a thicker
coating of 0�71 cm. The computed onset velocity of 3�0Ct is therefore consistent
with the observed trend for the slow waves.
The onset velocity for the convective instability (denoted by U�conv�1 for brevity)

of the turbulent boundary layer starts at a value of U1� 0�9553Ct for a nearly
elastic layer (d! 0). This is the Rayleigh surface-wave speed of the layer. Indeed
as d! 0, the U�conv�1 for both turbulent and laminar boundary layers do not
depend on Kp and yp , but can be shown to tend to the same Rayleigh
wave speed limit of the wall cR� 0�9553Ct in accordance with the free-wave
criterion in Yeo and Dowling [10]. The onset velocity U�conv�1 increases with
d indicating the Class B character of the convective modes. The increase
is fairly steep at ®rst, but tapers off as U�conv�1 approaches the onset velocity of the
absolute instability U�abs�1 . The U�abs�1 acts as an upper bound to the U�conv�1 ,
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Figure 5. The effects of material damping on the onset of absolute (ÐÐ) and convective (±±±)
instabilities for laminar and turbulent boundary layers. The symbols * and & denote results for
the case of variable Kp and yp .

* The present ¯ow model lacks a well-de®ned ¯ow lengthscale to pin down the unstable
wavelength accurately. It has a tendency to pick high wavenumber instabilities because of the
greater compliance of the compliant layer to those modes.
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since U�conv�1 EU�abs�1 as noted earlier. The U�conv�1 is thus forced to travel just
below the U�abs�1 curve as d becomes large, with U�conv�1 tending ever closer
asymptotically to U�abs�1 as d is further increased. Examination of the o-plane
reveals that the cusp-point eigenstate gradually approaches the maximum point
of the ai� 0 contour as d becomes large. The traversing of the real-o axis by the
maximum point and the cusp point marks the onset of convective and absolute
instabilities, respectively. Further numerical study suggests that the two points
would converge in the limit of in®nitely large d. Upon their convergence, the
resultant eigenmode will be an absolute instability. The convective (and also
temporal) instability of the ¯ow would then become synonymous with its
absolute instability; a situation similar to that for uniform potential ¯ow
considered earlier. Preliminary results from full modelling of the turbulent
boundary layer (with eddy-viscosity modelling) lend support to what has been
described above. The relative indifference of the onset velocity U�abs�1 for absolute
instability (at larger d) suggests a Class C energy character for the instability.
Lucey and Carpenter [23] also found similar Class C behaviour for SD-looking
waves on a ®nite-length compliant panel in a potential ¯ow. These are somewhat
in contrast to the Class A ®nding of Yeo et al. based on viscous-¯ow modelling.
However, given the simplicity of the ¯ow model used here and in Lucey and
Carpenter, the difference may not be surprising. We hope to resolve this point in
our future work. It is also pertinent to note that as d becomes large, the phase
speed of the convective instability mode slows down towards zero. Figure 6
shows the declining trend of the phase speed for convective instability modes in
the turbulent boundary layer; cr falls below 0�05U1 for d> 0�1. There is thus a
close association between absolute instability and slowly moving convective
modes.
The U�abs�1 and U�conv�1 curves for laminar boundary layers display many

qualitative similarities with the results for turbulent layers (see Figure 5). The
U�abs�1 also remains fairly constant and independent of the level of material
damping. It hovers around 6�0Ct over most of the damping range, and dips to
5�63Ct as d! 0. The U�conv�1 starts from 0�9553Ct for a nearly elastic wall (as has
already been mentioned), and rises in value towards U�abs�1 with increase in
material damping. There is a noteworthy difference between the two sets of
results though. Owing to the much larger value of the U�abs�1 for the laminar layer
(which is about twice the value of the turbulent case) and the same starting value
of U�conv�1 for both ¯ows, a signi®cant margin of difference continues to persist
between the U�abs�1 and U�conv�1 even at a fairly large d. This means that the
occurrence of absolute instability in laminar boundary layers is most likely
preceded by the onset of strong convective instability. This agrees with what was
also found by Yeo et al. [14].
At low levels of wall damping, the convective modes with their lower onset

velocities are expected to be the dominant mode of instability. These modes
travel at a fair speed and possess a sinusoidal form under incipient condition.
There is little doubt the highly sinusoidal fast waves observed by Gad-el-Hak [2]
over his nearly elastic compliant layers are waves of convective instability.
Conventional normal-mode thinking has generally ascribed the appearance of
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the slow wave (identi®ed with Static Divergence) instability to the suppression of
the fast waves (convective modes, travelling-wave ¯utter) by material damping
(see references [10, 22], for example). Thus, high damping has been thought to
have increased the onset ¯ow velocity of the fast wave above the onset velocity of
the SD mode (slow wave) so that the latter would become the dominant mode of
instability. This has been the generally accepted explanation for the observation
of slow waves in the experiments of Gad-el-Hak et al. [1]. As will be seen below,
this simple interpretation of the experimental events may be further re®ned, and
new insights gained, with the bene®t of a spatio-temporal analysis.
Firstly, the onset velocity for the fast wave (convective mode) U�conv�1 can never

increase above the onset velocity of the slow wave if the latter is associated with
an absolute instability of the ¯ow. This should remain true even if Kp and yp are
not constant but functions of a and o because the inequality U�conv�1 EU�abs�1 is
merely a fundamental consequence of the fact that the convective (fast) modes
and the absolute instability mode are derived from the same temporal branch of
instability. Secondly, the spatio-temporal results show that increase in damping
merely causes the marginal fast-wave (convective) eigenmode and the slow-wave
(absolute instability) eigenmode to converge. For turbulent boundary layers on a
highly damped compliant wall, the close identity (proximity) of the two
eigenmodes indicates that it would be very dif®cult to distinguish between them,
especially in experiments given practical limitations on accuracy of control and
measurements. In such a situation, absolute instability is likely to follow closely
on the heel of any convective instability. It will quickly assert itself over the
latter so that convective instability will be at best a ¯eeting phenomenon. It is
pertinent at this juncture to recall an observation of Gad-el-Hak et al. [1]
concerning the initial development of the slow waves. They noticed that the
appearance of the large-amplitude slow waves is always preceded by a highly
transitory small-amplitude wave train. It is entirely plausible the highly transient
incipient wave train (which they could not record on ®lm) actually represents the
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Figure 6. The effects of material damping on the phase speed of convective modes for a turbu-
lent boundary-layer ¯ow.
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initial onset of a convective mode. In the course of increasing the ¯ow velocity
U1 to initiate instability, the absolute instability mode with its marginally larger
onset velocity might have been triggered at the same time, and it grew quickly to
overwhelm any token of the weaker instability. Other indications supporting the
view that the slow waves are produced by absolute instability include the

temporal-like growth of the incipient slow waves. Gad-el-Hak et al. had also
noted that the slow waves have highly asymmetric waveform with sharp peaks and
shallow troughs in between. Absolute instabilities, which are derived from causal
mode coalescence, are likely to have a non-sinusoidal appearance because their
waveform contains contributions from a continuous spectrum. Non-linear effects
are clearly also important in the development and equilibration of the ®nal
observed slow waves given their large amplitude; so not all features of the

observed slow waves may be explained on the basis of the present linear study.
The present spatio-temporal results provide strong evidence that the observed

slow (SD) waves on highly damped compliant walls are indeed manifestations of
absolute instability. This may also be the reason why SD waves are commonly
observed in both experiments and in the nature (the wrinkling waves on dolphins
and humans in rapid swimming [24]) since these surfaces do possess signi®cant

levels of material damping. A wall with slightly lower damping might then show
up the two stages of instability more clearly. Yet for a wall with very low
damping (nearly elastic), it would be dif®cult to distinguish between the two
instabilities since the ¯ow and wall would be dominated by strong convective
modes before the appearance of any SD mode.
It is less easy, however, to be de®nite about the cause for the absence of the

SD or slow waves under conditions of laminar ¯ow in Gad-el-Hak et al. [1]. It is
possible the absence could be due to the disturbance-free environment of the
towing tank under laminar ¯ow conditions as Duncan et al. [4] had suggested.
Other plausible explanations are suggested by the above laminar spatio-temporal
results, which show that convective instability sets in at considerably lower onset
velocities than absolute instability. The ®rst is that the ¯ow or towing speeds

were simply not high enough for the tested surfaces, which for practical reasons
could not be made with stiffnesses below a certain limit. The second is that
strong convective instability could have prevailed over the ¯ow before the onset
velocity for absolute instability was reached, and had wrought changes to the
¯ow that subsequently precluded the occurrence of absolute instability. A very
high level of material damping would be required for slow (SD) waves to occur
under a laminar boundary layer.

For plane channel-¯ow between compliant plates, Davis and Carpenter [25]
have shown that SD type instabilities are prevented if the properties of the wall
are such as to favour interactions between the most unstable (least-damped) TS
modes of the ¯ow and the lowest free wave speed of the plates. It is unclear if a
similar condition also holds for viscoelastic layers. It is possible this condition
may be related to a situation in which convective instability is the dominant

mode and conditions (such as the onset velocity) admitting an absolutely
unstable SD mode have not been reached.
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Constant but representative values of Kp and yp have so far been employed in
the above study for simplicity. However, many of the important qualitative
features of stability behaviour discussed above are expected to remain valid if Kp

and yp are allowed to vary. To be assured that the observed trends are not
unduly affected by variation in the parameters, available data in Kendall [l7]
were used to model the variation of Kp and yp as functions of phase speed cr/U1
(there is insuf®cient data in Kendall to model the effect of a). Variable Kp and
yp are obtained by linearly interpolating their values between cr/U1 of 0�0 and
0�25 (maximum available). The onset velocities for absolute and convective
instabilities based on the above variation of Kp and yp are marked by circles and
squares respectively in Figure 5. No results are shown for d less than about 0�03
because the cr/U1 involved is outside the interpolation range. The variable Kp

and yp results show slightly higher onset velocities towards lower damping (in
agreement with the prediction of our preliminary eddy-viscosity turbulent-¯ow
model). But more crucially, the qualitative feature of onset-velocity convergence
with increasing material damping remains essentially the same as the constant
parameter case, as expected.
For the laminar case, Orr±Sommerfeld calculation based on Yeo et al. [14]

was ®rst carried out to determine if the values of Kp� 0�067 and yp�ÿ30�4�
used above were reasonable. These values were obtained by Duncan et al. from
direct numerical simulation of ¯ow over stationary (c� 0) ®nite waves of
wavelength l/d*� 12. For Reynolds numbers of 1500 and 2000 (which are in the
high ¯ow speed range encountered in Gad-el-Hak et al.'s experiments, assuming
the laminar boundary layer starts from the leading edge of the plate) and
wavelength l/d*1 12 (mid-range of experimental results; see Duncan et al.),
values of Kp1 0�067, yp1ÿ27�2� and Kp1 0�06, yp1ÿ27�5� were obtained,
respectively, which are close to the adopted values. The variations of Kp and yp
for values of c up to about 0�2 (low phase-speed regime) were also computed.
The variations of Kp and yp with c are used to recompute the onset velocities as
a function of material damping coef®cient d. This is also depicted in Figure 5.
Similar to the turbulent case, onset velocity for absolute instability rises as
material damping is reduced, which is indicative of Class A energy behaviour. At
the same time, the onset velocity for the convective modes decreases resulting in
a rapid divergence of the two onset velocities towards lower d. There is thus a
large onset velocity difference even at high values of d, similar to what has been
observed for the constant Kp and yp case.

4. CONCLUSIONS

The spatio-temporal stability of uniform potential ¯ow and modi®ed potential
¯ows, representing turbulent and laminar boundary layers, over viscoelastic
compliant layers has been investigated qualitatively. The spatio-temporal
approach offers insights into the stability behaviour of open systems that could
not be gained from a purely temporal or spatial interpretation of instability.
The study reveals that the instability of potential ¯ow over viscoelastic

compliant walls is always absolute, with an onset ¯ow velocity of 1�4142Ct which
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is independent of the level of wall damping. Turbulent and laminar boundary
layers admit both convective (travelling type) and absolute (stationary type)
instabilities. Convective instability has a lower onset velocity than absolute
instability; U�conv�1 EU�abs�1 . Convective instability dominates in ¯ow over
compliant layers with low levels of material damping. Thus, the highly sinusoidal
small-amplitude fast waves observed by Gad-el-Hak [2] on his nearly elastic
layers are waves of convective instability. Increase in material damping causes
U�conv�1 to rise progressively and asymptotically towards U�abs�1 . The difference in
the onset velocities for the two instabilities (U�abs�1 ÿU�conv�1 ) is vanishingly small
for turbulent boundary layers when damping becomes large. This is due to the
relatively low value of the U�abs�1 . Laminar boundary layers, on the other hand,
have much larger U�abs�1 , so that a signi®cant difference in onset velocities
(U�abs�1 ÿU�conv�1 ) persists even to fairly high levels of damping. Convective
instability may thus be expected to dominate in laminar boundary layers except
at very high wall damping levels. Our results also show that the absolute
instability and its associated convective instability eigenstates converge to each
other in the limit of a very highly damped compliant wall. The limiting
convective modes have phase speed tending to zero. This association indicates
that the occurrence of absolute instability and zero-phase-speed wave on highly
damped viscoelastic layers, as a cause for the observed slow waves under
turbulent boundary layers, are closely related phenomena. It also suggests that,
as a practical measure, the occurrence of absolute instability may be con-
veniently determined via the simpler temporal theory, where one would look for
marginally unstable modes with small phase speed.
For a turbulent boundary layer over a signi®cantly damped compliant layer, it

may not be possible to distinguish experimentally between the two instabilities
because of the very small onset velocity difference. Indeed, absolute instability is
expected to dominate in such ¯ows. The viscoelastic compliant walls of Gad-el-
Hak et al. [1] possess signi®cantly high levels of material damping. The present
study provides convincing evidence that the observed large-amplitude slow waves
are manifestations of absolute instability of the ¯ow and wall.
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